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Abstract 

We extend the definition of creation and annihilation operators for a particle in an 
arbitrary state in Fock space to the relativistic case. We pay special attention to the 
metric in this space and to the phase convention that leads to anticommutation relations 
for these operators. The same conventions also apply in the case of several types of 
fermions. 

1. Introduction 

We have seen (Marx, 1970a) how symmetric and antisymmetric com- 
ponents  o f  a vector in Fock  space lead to commuta t ion  and ant icommuta-  
t ion relations respectively for creation and annihilation operators.  These 
operators were defined in terms of  normalized functions within a Hilbert  
space, a l though we pointed out that  much of  the usual approach is recovered 
when we formally substitute Dirac 3-functions in their place. 

I t  is well known that  the ' second quantizat ion '  formalism is equivalent 
to quan tum mechanics for systems of  several particles in the nonrelativistic 
case, as seen when a Fock  space (Fock, 1932) is used. On the other hand, 
it is generally agreed that  quantized fields are necessary in the relativistic 
case to  allow for  processes in which particles are created or annihilated. 
We have shown (Marx, 1969, 1970b, c, d) that  this is not  so; pair creation 
and annihilation can be taken into account  in a theory o f  relativistic 
quan tum mechanics with a fixed number  o f  'particles',w which can be 
found propagat ing forward in time as particles or backward in time as 
antiparticles. These studies suggest that  it is convenient to extend the 
nonrelativistic formulat ion in Fock  space to the relativistic case in a 
particular way, which we present below. 

t This work was supported in part by Drexel University. 
:~ Current address: Harry Diamond Laboratories, Electromagnetic Effects Laboratory 

Dawson Beach Rd., Woodbridge, Va 22191, U.S.A. 
w We use the quotation marks on a term like 'particles' to indicate that it refers 

collectively to particles and antiparticles. 
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The relativistic quantum mechanics of several charged bosons in an 
external electromagnetic field can be formulated (Marx, 1970c) in terms 
of a symmetric wave function dp(")(Xl,X2,...,x,) that obeys a set of second- 
order differential equations. This implies that the state of the system is not 
given by the wave function alone, but that a number of time derivatives 
also have to be specified. An equivalent but more convenient description 
of the state of the system relies on the set of probability amplitudes 
g(~1~2--.t%)(Xl,X2 . . . . .  X n )  , which are generalizations of the positive and 
negative frequency parts]" of $("), and the corresponding creation and 
annihilation operators are also given there. 

A similar theory for spin-�89 fermions presents some serious difficulties, 
due to the fact that the conserved density for the Dirac equation is positive, 
while our probabilistic interpretation is based on conservation of charge. 
We have proposed a solution through a modification of the Dirac equation 
(Marx, 1970c) and another based on the Klein-Gordon equation for 
two-component spinors (Marx, 1970b). In either case we can use the Fock 
space briefly presented in the latter. 

In the following section we give arguments that lead to our choice of 
components of the Fock space for relativistic particles, the scalar product 
in this space and the creation and annihilation operators. In Section 3 we 
extend these ideas to several different types of particles, and we conclude 
with some remarks in Section 4. Special attention is given to the phase 
convention that leads to anticommutation relations for those operators. 

The notation we use is explained below or in some of our previous papers 
(Marx, 1969, 1970a, b, c, d). 

2. Creation and Annihilation Operators for Relativistic Fermions 

We restrict our discussion to spin -1 fermions in order to be specific, and 
we deal only with the state vectors that describe the systems, which have 
no time dependence. The dynamics we have in mind can be based on either 
form of relativistic quantum mechanics (Marx, 1970b, d). 

The components of a vector ~ in Fock space are probability amplitudes 
either in configuration or in momentum space. We adopt the notation 
~(~1 K2 ... ~,) where a subindex i stands either for the position variable xi ( 1 , 2  . . . . .  n ) ,  

and the two-valued spinor index Ai, or for the momentum variable kl and 
the helicity index ?t~. These two types of amplitudes are related by 

g ( ~ ' l  : : : , ~ n ) ( X 1 ,  Xn) = (27r) -3n/2 f d 3 k! d 3 k n b (~  ::: ~ n n ) ( k l ,  . . ,  k n )  A I " " "7 . . . .  

(2.1) 

t The indices K~ range over + and - ,  and these amplitudes obey symmetry relations 
derived from the symmetry of d?(.). 
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where the X are the two-component helicity states. These amplitudes are 
antisymmetric under the exchange of the sets of variables that correspond 
to the same mode of propagation, and the exchange of the variables that 
correspond to different modes gives a related amplitude with a factor o f - l .  
The amplitude in momentum space is the one generally used, possibly with 
the helicity states replaced by spin up and spin down, but there is no agree- 
ment about the amplitude in configuration space. To a certain extent, it 
is a matter of definition, but the amplitudes defined in equation (2.1) lead 
to a probability density with the usual properties (Schr6der, 1964; Marx, 
1968, 1970b). This is not the case with the expressions used by Schweber 
(1961). 

The precise definitions of the creation and annihilation operators depend 
on the choice of a scalar product in Fock space, which in turn is suggested 
by the dynamical theory to be used. We choose 

(W, ~rt,) = ~b~0), ~b,(0) + (~b(~,), ~b,(~,)) + (~b(~, ~2), ~b',~, ~2)) + . . .  (2.2) 

where we have to sum over the repeated indices ,% and the scalar products 
of the amplitudes on the right-hand side implies summations over spin 
indices and integrations over continuous variables. We explicitly consider 
all possible values of the K~, not just those amplitudes in which the particle 
variables come before the antiparticle variables, although the latter suffice 
to specify the state. We have two reasons to do this: It simplifies the writing 
of the equations of motion for the amplitudes, and it makes the connection 
between conservation of charge and the norm of the statet possible. 

We give the creation and annihilation operators for a particle or an 
antiparticle in a state b given by a normalized two-component vector in a 
Hilbert space. We set 

~ _  = R(• tF (2.3) 

7/:  ' = L~+-)(b) ~ (2.4) 

and we have to specify only the components with p particle variables 
followed by m antiparticle variables. We have:~ 

q~+(1,~+...+-...-) = n - i / 2 [ ( p  1)!]-1 qi2...~,t, ,t, ~+...+-...-) (2.9) 
. . . .  p , p + I  . . . . .  n )  - -  ~ ' 1 , 2  . . . . .  p u i l  ~ ( i 2  . . .  ip, p+l  . . . .  n) 

t W h e n  the given ' boundary '  condi t ions specify p particles at  the initial t ime and  m 
antiparticles at  the final time, there are Cp" ways to choose the particle variables out  of 
the total  n u m b e r  n of variables. Thus,  the no rm of  this ampl i tude is p!m !(n !)-1 and  the 
no rm of  the  vector  in Fock  space is 1. The  corresponding theory for  scalar bosuns was 
presented before (Marx,  1970c). 

:~ In the  equat ions  tha t  follow we use the summat ion  convent ion  in a flexible way. 
The  indices of  the Levi-Civi ta  tensor  range over the integers f rom 1 to p or  f rom p + 1 
to n, but  when the index is a t tached to a function,  it represents the spin and  cont inuous  
variables. I f  the repeated index stands on two functions,  a summat ion  over spin indices 
and  an  in tegrat ion over cont inuous  variables is implied. Thus,  for  instance 

�9 ( + + )  - 1 / 2  ~b+ ~1 ~.2 (kl,  k2) = 2 [b;q(kl)~+)O,~:)-b~2(k2)~+)(kl)] (2.5) 
�9 ( + - - - )  - 1 t 2  ( + - - )  f + - - )  ~b- ~1 ~2,~3 z4 (kl,  k2, k3, k4) = - 4  [bz2 (k2) ~ ,  ~3 ~.4 (kl, k3, k 4 ) -  b~a (k3) ~bgl ~2 a4 (kl, k2, k4) 

+ b~ 4 (k4) ~b~+s (kl,  k2, k3) (2.6) 
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~b'_(l,(+...+ . . . . .  ) = ( _ ! ) P n - l / 2 [ ( m _  l ) ! ] -1%+~l ,2 . . . i , ,  . . . ,p ,p+l . . . . .  n) p+2 . . . . .  , ,bit 

,t, (+...+-...-) (2.10) X "F(I . . . . .  P, i2 ... ira) 

t/f; ( + ' " + - " ' - )  = (n -~- 1 ) l ] 2 b ~ ( t ,  ( + + " ' + - ' - - - )  (2 .11)  1 . . . . .  p,p+I . . . . .  n) (1 . . . . .  p, p+l . . . . .  n) 

c+...+-...-) - : - D  p O~ 1) I/2 b~ <+'" "+ . . . . .  -) (2.12) 

Annihilation operators are the Hermitian conjugates of creation opera- 
tors with respect to the metric (2.2), and they satisfy the anticommutation 
relations 

{R<~)(b), R(~')(b')} = 0 (2.13) 

{L(~)(b), L(~')(b')} = 0 (2.14) 

{L(~)(b), R<~')(b')} = 3~'(b, b') (2.15) 

We note that the states W' and ~ "  are not necessarily normalized for an 
arbitrary b, and that it is the phase factor (-1) p in equations (2.10) and 
(2.12) that makes the operators for particles and antiparticles anticommute; 
without it they would commute. 

If  we set 
ba-(k") 8aa,, 8(k - k") (2.16) 

we obtain operators R(a~)(k) and L~)(k), whose nonvanishing anticommu- 
tators are given by 

{L~)(k), R~,')(k')} -- 3 ~ '  8aa, 3(k - k') (2.17) 

with similar results in configuration space, where we use 8-functions as in 
the nonrelativistic case, not the S ~+) used by Schweber (1961). 

3. Several Types o f  Relativ&tie Fermions 

It is customary to assume that creation and annihilation operators 
corresponding to different types of particles also anticommute. This is no 
longer directly related to the statistics obeyed by the particles, and the field 
operators are not observables in quantum theory anyway. 

In the case of different particles, no useful purpose is served by mixing 
the sets of variables. The appropriate phase factor that makes the operators 
anticommute is easily determined after the types of particles are numbered. 

" ~++~ k - I/2 * f+++) $+ ~i z2 (kl, 2) - (2.7) 3 b~ (k) ~bx ~1 x2 (k, kl ,  k2) 

. . . .  = - 5  b~ (k) $~1 a a2,3 ~.4 (kl, k, k2, ka, k4) (2.8) ~_ a~+2,t3 ~4 (kb k2, k3, k4) 1/2 , f . . . . .  ) 

The different scalar product  used by Schweber leads to different normalization factors, 
which in our notat ion would be p-1/2, m-1/2, (p + 1)1/2 and (m + 1) 1/2 in equations 
(2.9)-(2.12). Since the dynamics we have in mind selects a subspace with a fixed number  
of  variables, we could introduce factors of  (n !)-1 in equation (2.2), as in Marx (1970a), 
which eliminates the factors n -1/2 and (n + 1) 1/2 from these equations. 
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We can use equations (2.9)-(2.12) for a type r particle if we ignore the 
effect of the other particles, except for the phase factor (_1),1+,~+... +,r-l. 

It is not obvious, though, precisely which are different particles. Protons 
and neutrons are certainly different when electromagnetic interactions are 
considered, but they appear as two different states of  the nucleon, dis- 
tinguished by the values of an isospin index, as far as strong interactions 
are concerned. Even more particles can be included if we deal with unitary 
spin. These alternatives do make a difference in what we have called 
normalization factors. The component of the vector with n~ 'protons' 
n 2 'neutrons' in the equation for the creation operator for one proton has 
a factor (n~) -1/z if  we consider them as different types of particles, and 
(n~ + n2) -~/z if they are states of  the same particle. In the latter case any 
of the n~ + nz variables can correspond to a proton or a neutron. This is 
naturally also reflected in the value of the norm of  the vector, that is, the 
number of times a term is repeated in the scalar product. 

From the discussion above we conclude that the precise form of the 
Fock space and the operators depends on the nature of the dynamical 
problem we are considering. 

4. Concluding Remarks 

We have presented our definitions of creation and annihilation fermion 
operators in a relativistic Fock space based on probability amplitudes in 
momentum or configuration space. Although we did not consider the 
dynamical development of the state vector, we determined the precise 
form of the scalar product and operators in terms of a relativistic quantum 
mechanics with a fixed number of 'particles', which is closer to the non- 
relativistic formulation than the usual relativistic quantum field theories. 
It can be based on conservation of charge, of baryon number or even 
angular momentum, which makes fermion lines in Feynman diagrams 
continuous. Such a theory would exclude closed fermion loops, which are 
troublesome in the perturbation expansion of cross sections; it remains 
to be seen whether a complete dynamical theory that agrees with experi- 
ment can be formulated under these terms. 

We have restricted our discussion to spin-�89 fields, but we foresee no 
difficulties in extending this formalism to particles with higher spin, if 
necessary. 

Boson fields are associated to particles with integer spin, that can be 
created and annihilated singly. Such a quantized field would correspond 
more closely to the usual approach, in which the number of particles is 
not fixed. 

We have also emphasized the phase factors that lead to anticommutation 
relations for operators of essentially independent particles; such a dis- 
cussion is much simpler in Fock space than in occupation-number space. 

These considerations are preliminary to the solution of  much more 
difficult problems, such as a mathematically sound theory of  quantum 
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electrodynamics or a simpler formulat ion o f  bound  state problems in 
relativistic quantum mechanics or quantum field theory. 

References 

Fock, V. (1932). Zeitschriftfiir Physik, 75, 622. 
Marx, E. (1968). Nuovo cimento, 5713, 43. 
Marx, E. (1969). Nuovo cimento, 60A, 669. 
Marx, E. (1970a). Physica, 48, 247. 
Marx, E. (1970b). Physica, 49, 469. 
Marx, E. (1970c). Nuovo cimento, 67A, 129. 
Marx, E. (1970d). International Journal of  Theoretical Physics, Vol. 3, No. 5, p. 401. 
SchrSder, U. (1964). Annalen der Physik, 14, 91. 
Schweber, S. S. (1961). An Introduction to Relativistic Quantum FieM Theory, Chapter 8, 

p. 230. Row, Peterson and Company, Evanston, Illinois. 


